Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli.

نویسندگان

  • Veronika Tchesnokova
  • Pavel Aprikian
  • Dagmara Kisiela
  • Sarah Gowey
  • Natalia Korotkova
  • Wendy Thomas
  • Evgeni Sokurenko
چکیده

Escherichia coli causes about 90% of urinary tract infections (UTI), and more than 95% of all UTI-causing E. coli express type 1 fimbriae. The fimbrial tip-positioned adhesive protein FimH utilizes a shear force-enhanced, so-called catch-bond mechanism of interaction with its receptor, mannose, where the lectin domain of FimH shifts from a low- to a high-affinity conformation upon separation from the anchoring pilin domain. Here, we show that immunization with the lectin domain induces antibodies that exclusively or predominantly recognize only the high-affinity conformation. In the lectin domain, we identified four high-affinity-specific epitopes, all positioned away from the mannose-binding pocket, which are recognized by 20 separate clones of monoclonal antibody. None of the monoclonal or polyclonal antibodies against the lectin domain inhibited the adhesive function. On the contrary, the antibodies enhanced FimH-mediated binding to mannosylated ligands and increased by severalfold bacterial adhesion to urothelial cells. Furthermore, by natural conversion from the high- to the low-affinity state, FimH adhesin was able to shed the antibodies bound to it. When whole fimbriae were used, the antifimbrial immune serum that contained a significant amount of antibodies against the lectin domain of FimH was also able to enhance FimH-mediated binding. Thus, bacterial adhesins (or other surface antigens) with the ability to switch between alternative conformations have the potential to induce a conformation-specific immune response that has a function-enhancing rather than -inhibiting impact on the protein. These observations have implications for the development of adhesin-specific vaccines and may serve as a paradigm for antibody-mediated enhancement of pathogen binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catch-bond mechanism of the bacterial adhesin FimH.

Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial gl...

متن کامل

Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin.

Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first t...

متن کامل

Functional flexibility of the FimH adhesin: insights from a random mutant library.

Type 1 fimbriae are surface organelles of Escherichia coli which mediate D-mannose-sensitive binding to different host surfaces. This binding is conferred by the minor fimbrial component FimH. Naturally occurring variants of the FimH protein have been selected in nature for their ability to recognize specific receptor targets. In particular, variants that bind strongly to terminally exposed mon...

متن کامل

Adaptive mutations in the signal peptide of the type 1 fimbrial adhesin of uropathogenic Escherichia coli.

Signal peptides (SPs) are critical for protein transport across cellular membranes, have a highly conserved structure, and are cleaved from the mature protein upon translocation. Here, we report that naturally occurring mutations in the SP of the adhesive, tip-associated subunit of type 1 fimbriae (FimH) are positively selected in uropathogenic Escherichia coli. On the one hand, these mutations...

متن کامل

In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli

  Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 79 10  شماره 

صفحات  -

تاریخ انتشار 2011